Synthesis of Naturally Occurring Dienamides by Palladium-Catalyzed Carbonyl Alkenylation

Ido Schwarz, and Manfred Braun*
Düsseldorf, Institut für Organische und Makromolekulare Chemie der Heinrich-Heine-Universität

Received October 9th, 1998
Dedicated to Professor Hans-Dieter Martin on the Occasion of his 60th Birthday
Keywords: Eliminations, Alkaloids, Amides, Palladium, Piperdardine, Chingchengenamide A

Abstract

Piperdardine 1 and chingchengenamide A 2, naturally occurring dienamides, are synthesized in 28% and 16% overall yield, respectively, from commercially avail-

able safrole 3. The key steps involve aldol addition to the enal 5 and mild palladium-catalyzed elimination of the carbonates $\mathbf{7}$ and $\mathbf{1 0}$.

Recently, we reported on a mild and stereoconvergent palla-dium-catalyzed alkenylation reaction of α, β-unsaturated aldehydes [1]. Here, the application of this method to a short synthesis of the naturally occurring dienamides piperdardine $\mathbf{1}$ and chingchengenamide A $\mathbf{2}$ is described. The amide $\mathbf{1}$ was recently isolated from the stem of Piper tuberculatum, a plant which serves as a sedative and as an antidote for snake bite in Brazil [2]. Asarum chingchengense, the source of chingchengenamide A 2, is used in China as a folk medicine for diaphoresis and as an emetic [3]. According to a recent study, an effect of 2 on the invasion of human MCF-7/6 breast carcinoma cells was not detected [4]. The same amide 2, a synthesis of which was described recently [5], was also found in Piper falconeri and showed insecticidal activity against flies and mosquitoes [6]. Having in hand an easy protocol for the alkenylation of α, β-unsaturated aldehydes, we applied the method to the preparation of chingchengenamide A 2 and to the first synthesis of piperdardine 1.

Thus, commercially available safrole $\mathbf{3}$ was converted into the aldehyde $\mathbf{4}$ by hydroboration and subsequent oxidation, according to a known protocol [5, 7]. Subsequent treatment with (formylmethylene)triphenylphosphorane followed by acidic hydrolysis [8] led to the enal 5, which served as the intermediate for the preparation of both amides $\mathbf{1}$ and $\mathbf{2}$. In order to obtain piperdardine 1, acetyl piperidine $\mathbf{6}$ was deprotonated to give the lithium enolate, and added to the aldehyde 5. The alkoxide thus formed was protected in situ by addition of methyl chloroformate. When the carbonate 7 obtained thereby was treated with $5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ at room temperature, a smooth conversion into the dienamide $\mathbf{1}$ occurred.

The product 1 turned out to be identical with the natural product. The overall yield of the alkenylation step amounted to 62%, starting from 5 .

8

10

Chingchengenamide A $\mathbf{2}$ was available in an analogous way. Thus N - i-butyracetamide $\mathbf{8}$ was deprotonated twice and added to the aldehyde 5 to give the allylic alcohol 9 in 72% yield. This was converted into the carbonate $\mathbf{1 0}$ by reaction with methyl chloroformate in pyridine and subsequently submitted to the palladium-catalyzed elimination to give the amide $\mathbf{2}$, which was found to be identical with chingchengenamide A according to the spectroscopic data.

Compared with established alkenylation methods as e.g. the Wittig, the Horner-Wadsworth-Emmons and the Julia reaction, the protocol used here avoids not only the tedious removal of phosphine oxides but also the use of toxic reagents like phosphonates and sodium amalgam [9]. The naturally occurring dienamides $\mathbf{1}$ and $\mathbf{2}$ are thus available in a straightforward manner in 28% and 16% overall yield, respectively, starting from safrole 3.

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. The latter institution also kindly provided a doctoral fellowship to I. S.

Experimental

The following spectrometers were used: NMR spectra: Bruker DRX 500; CDCl_{3} solutions and TMS as internal standard. The assignment of the signals refers to the numbering given in formulae 1 and 2. Mass spectra: Varian MAT CH5. IR spectra: Bruker Vector 22. Chromatography: TLC: Silica gel $60 \mathrm{~F}_{254}$ (Merck). Column chromatography: Silica gel 60, mesh size $0.04-0.063 \mathrm{~mm}$ (Merck). Elemental analyses were carried out by Institut f. Pharmazeutische Chemie, Universität Düsseldorf. Tetrahydrofuran (THF) was predried with KOH and distilled under N_{2} from sodium/benzophenone. It was taken from the receiving flask, which was closed by a septum, using syringes or cannulas. Reactions performed at temperatures lower than $-20^{\circ} \mathrm{C}$ were monitored by introducing a thermocouple, connected to a resistance thermometer (Ebro), through a septum into the reaction mixture. General remarks concerning the handling of lithium enolates and other organolithium compounds are given in ref. [10].

3-(1,3-Benzodioxol-5-yl)-propanal (4) was prepared according to ref. [7]

5-(1,3-Benzodioxol-5-yl)-2-pentenal (5)

A solution of $4(0.89 \mathrm{~g}, 5.00 \mathrm{mmol})$ and (formylmethylene) triphenylphosphorane ($1.59 \mathrm{~g}, 5.20 \mathrm{mmol}$) in benzene (50 ml) was refluxed for 24 h . The solvent was removed in a rotary evaporator and the residue was subjected to column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 5 as a light yellow oil. Yield $0.63 \mathrm{~g}(62 \%) ; R_{\mathrm{f}}=0.42$. $-\mathrm{IR}: ~ v / \mathrm{cm}^{-1}=2896,1688,1637$, 1503, 1490, 1443, 1246, 1188, 1125, 1039, 973, 935, 810. ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta / \mathrm{ppm}=2.59-2.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 2.75$ (t, $\left.{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5\right), 5.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.12\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=\right.$ $\left.15.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.63\left(\mathrm{dd},{ }^{3} J=7.8\right.$ $\left.\mathrm{Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 '\right), 6.67$ (d, $\left.{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right)$, $6.74\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}{ }^{7}\right), 6.83\left(\mathrm{dt},{ }^{3} J=15.7 \mathrm{~Hz},{ }^{3} J=6.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 9.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{H}-1\right) .-{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}): \delta / \mathrm{ppm}=33.8(\mathrm{C}-5), 34.5(\mathrm{C}-4), 100.9\left(\mathrm{C}-2^{\prime}\right), 108.3$ (C-4'), 108.7 (C-7'), 121.2 (C-6'), 133.5 (C-2), 134.0 (C-5'), 146.1 (C-7a'), 147.8 (C-3a'), 157.1 (C-3), 193.9 (C-1). - MS (EI, 70 eV): $m / z(\%)=204$ (12), 161 (3), 149 (3), 136 (9), 135
(100). C 70.57, H 5.92; found: C 70.45, H 5.82.

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$	calcd.:	C 70.57	H 5.92
(204.2)	found:	C 70.45	H 5.82.

1-[7-(1,3-Benzodioxol-5-yl)-1-oxo-2,4-heptadienyl]piperidine (Piperdardine) (1)

A 50-ml two-necked flask, connected to a combined nitrogen/ vacuum-line, was equipped with a magnetic stirrer and a septum. A thermocouple was introduced through the septum. During the following manipulations an N_{2} atmosphere was maintained in all flasks. Anhydrous THF (5 ml) and diisopropylamine ($0.15 \mathrm{ml}, 1.1 \mathrm{mmol}$) were injected through the septum by syringes. The mixture was stirred at $-78^{\circ} \mathrm{C}$, and a 1.6 M solution of BuLi in hexane $(0.46 \mathrm{ml}, 1.075 \mathrm{mmol})$ was added in such a way that the temperature did not exceed $-70^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$, the mixture was again cooled to $-78{ }^{\circ} \mathrm{C}$. In a $25-\mathrm{ml}$ two-necked flask, connected to the combined nitrogen/vacuum-line, a solution of acetyl piperidine (6) $(0.13 \mathrm{~g}, 1.05 \mathrm{mmol})$ in anhydrous THF $(5 \mathrm{ml})$ was stirred at $-78^{\circ} \mathrm{C}$. This mixture was added by a cannula to the slightly evacuated $50-\mathrm{ml}$ flask containing the solution of lithium diisopropylamide. After stirring for 30 min at $-78{ }^{\circ} \mathrm{C}$ the aldehyde $5(0.20 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added slowly by syringe so that the temperature did not exceed $-70^{\circ} \mathrm{C}$, and stirring was continued for 30 min at $-78^{\circ} \mathrm{C}$. Methyl chloroformate ($0.23 \mathrm{ml}, 3.0 \mathrm{mmol}$) was injected, and the mixture was allowed to reach r.t. overnight. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{ml})$ was added. The mixture was transferred into a separatory funnel, and the organic layer was separated. The aqueous phase was extracted with diethyl ether ($2 \times$ 50 ml). The combined organic layers were washed with brine $(20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in a rotary evaporator. The crude 1-[7-(1,3-Benzodioxol-5-yl)-3-methoxy-carbonyloxy-1-oxo-4-heptenyl]piperidine (7) thus obtained was used without purification in the following step. $-{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta / \mathrm{ppm}=1.50-1.67(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5), 2.30$ (dt, ${ }^{3} J=15.1 \mathrm{~Hz},{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$ '), $2.48\left(\mathrm{dd},{ }^{3} J=15.2\right.$ $\mathrm{Hz},{ }^{3} J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), $2.60\left(\mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7{ }^{\prime}\right), 2.80$ (dd, $\left.{ }^{3} J=15.2 \mathrm{~Hz},{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.35-3.58(\mathrm{~m}, 4 \mathrm{H}$, H-2, H-6), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 5.48-5.55 (m, 2H, H-3', H$\left.4^{\prime}\right), 5.85$ (dt, ${ }^{3} J=14.2 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 5.91 (s, 2H, H-2"), 6.59 (dd, $\left.{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 6.64$ (d, $\left.{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 6.70\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime \prime}\right)$.

A 10-ml two-necked, was equipped with a magnetic stirrer, and connected to a combined nitrogen/vacuum-line was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.058 \mathrm{~g}, 0.05 \mathrm{mmol})$. Anhydrous THF (5 ml) and the crude carbonate 7 obtained above were added, and the mixture was stirred under N_{2} at ambient temperature over night. The solvent was distilled off in a rotary evaporator, and the residue was subjected to column chromatography (hexane/ethyl acetate $1: 1$) to give $\mathbf{1}$ as a light yellow oil. Yield $0.19 \mathrm{~g}(62 \%) ; R_{\mathrm{f}}=0.39 .-{ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta / \mathrm{ppm}=1.54-1.59(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 1.62-1.67(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-4), 2.42\left(\mathrm{dt},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.66\left(\mathrm{t},{ }^{3} \mathrm{~J}\right.$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$ '), 3.48 (br s, 2H, H-2), 3.61 (br s, 2H, H-6), 5.92 (s, 2H, H-2"), 6.05 (dt, ${ }^{3} J=15.1 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.5^{\prime}\right), 6.18\left(\mathrm{dd},{ }^{3} J=15.1 \mathrm{~Hz},{ }^{3} J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right.$ '), $6.26\left(\mathrm{~d},{ }^{3} J\right.$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{)}$), $6.61\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-6"), 6.66 (d, $\left.{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}\right), 6.72\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-7 "), 7.22$ (dd, $\left.{ }^{3} J=14.4 \mathrm{~Hz},{ }^{3} J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right)-$ ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta / \mathrm{ppm}=24.6(\mathrm{C}-4), 25.6(\mathrm{C}-3), 26.7$
(C-5), 35.0 (C-6', C-7'), 43.2 (C-2), 46.8 (C-6), 100.8 (C-2"), 108.1 (C-7"), 108.8 (C-4"), 119.1 (C-2'), 121.1 (C-6"), 129.5 (C-4'), 135.1 (C-5"), 140.8 (C-5'), 142.4 (C-3'), 145.7 (C-7a"), 147.6 (C-3a"), 165.5 ($\mathrm{C}-1$ '). The spectroscopic data are in accordance with those described in the literature [2].

7-(1,3-Benzodioxol-5-yl)-3-hydroxy-N-(2-methylpropyl)-4heptenamide (9)

Under N_{2} atmosphere, a solution of $N-i$-butyracetamide $\mathbf{8}$ ($0.13 \mathrm{~g}, 1.1 \mathrm{mmol}$) in anhydrous THF (5 ml) was stirred in a $50-\mathrm{ml}$ two-necked flask, equipped with a magnetic stirrer, a septum, and a thermocouple. After cooling to $-78^{\circ} \mathrm{C}$, a 1.6 m solution of BuLi in hexane ($1.38 \mathrm{ml}, 2.2 \mathrm{mmol}$) was added dropwise, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . After the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ again, the aldehyde 50.20 g , 1.0 mmol) was added slowly by syringe so that the temperature did not exceed $-70^{\circ} \mathrm{C}$. The mixture was allowed to reach r.t. overnight and worked up according to the procedure described above for 7 . The crude product was submitted to column chromatography (hexane/ethyl acetate 1:4) to afford 9. Yield $0.23 \mathrm{~g}(72 \%) ; R_{\mathrm{f}}=0.50 .-\mathrm{IR}(\mathrm{KBr}): v / \mathrm{cm}^{-1}=3312,2958$, 1636, 1570, 1505, 1446, 1262, 1184, 1098, 1049, 965, 923, 814. - ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta / \mathrm{ppm}=0.91\left(\mathrm{~d},{ }^{3} J=6.7 \mathrm{~Hz}\right.$, $\left.6 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 1.72-1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.27-2.41$ (m, 4H, H-2, $\mathrm{H}-6), 2.59\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7\right), 3.08\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H-1'), 3.78 (br s, 1H, OH), $4.42-4.46$ (m, 1H, H-3), 5.50 (ddd, $\left.{ }^{3} J=15.4 \mathrm{~Hz},{ }^{3} J=6.5 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.72$ (ddt, ${ }^{3} J=15.4 \mathrm{~Hz},{ }^{3} J=6.7 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.91 (s, $2 \mathrm{H}, \mathrm{H}-2 "), 6.13$ (br s, 1H, NH), $6.60\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} J=1.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 "), 6.65$ (d, $\left.{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 "\right), 6.71$ (d, ${ }^{3} J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 ")-{ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta / \mathrm{ppm}=20.1(\mathrm{C}-$ 3'), 28.4 (C-2'), 34.2 (C-6), 35.2 (C-7), 42.8 (C-2), 46.7 (C1'), 69.5 (C-3), 100.7 (C-2"), 108.1 (C-7"), 108.9 (C-4"), 121.1 (C-6"), 131.2 (C-5), 131.8 (C-4), 135.5 (C-5"), 145.6 (C-7a"), 147.5 (C-3a"), 171.9 (C-1).

| $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}$ | calcd.: | C 67.80 | H 7.89 | N 4.39 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (319.4) | found: | C 67.69 | H 8.15 | N 4.30. |

7-(1,3-Benzodioxol-5-yl)-N-(2-methylpropyl)-2,4-heptadienamide (Chingchengenamide A) (2)

In a $10-\mathrm{ml}$ two-necked flask, equipped with a magnetic stirrer and connected to a combined nitrogen/vacuum-line, allylic alcohol 9 ($0.16 \mathrm{~g}, 0.5 \mathrm{mmol}$) was dissolved in $\mathrm{CHCl}_{3}(1 \mathrm{ml})$ and pyridine $(2 \mathrm{ml})$. A solution of methyl chloroformate ($0.16 \mathrm{~g}, 1.7 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(1 \mathrm{ml})$ was added dropwise, and the reaction mixture was stirred for 30 min . The solvent was re-moved in a rotary evaporator, and the residue was dissolved in CHCl_{3}. The organic layer was washed twice with aqueous $\mathrm{HCl}(1 \mathrm{~N})$, twice with aqueous $\mathrm{NaOH}(2 \mathrm{~N})$, once with $\mathrm{H}_{2} \mathrm{O}$ and dried with MgSO_{4}. The solvent was removed in a rotary evaporator to give the crude 7-(1,3-Benzodioxol-5-yl)-3-methoxycarbonyloxy- N -(2-methylpropyl)-4-heptenamide $\mathbf{1 0}$ which was used without purification in the following step. ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta / \mathrm{ppm}=0.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}-3 '\right)$, $1.70-1.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.29\left(\mathrm{dt},{ }^{3} J=7.7 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}-6), 2.35-2.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 2.59\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H}-7), 3.06\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1\right.$ '), $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$,
5.41-5.52 (m, 2H, H-3, H-4), 5.82-5.89 (m, 1H, H-5), 5.90 (s, 2H, H-2"), 6.20 (br s, 1H, NH), 6.58 (dd, ${ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "), 6.63$ (d, $\left.{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 6.71$ (d, ${ }^{3} J$ $\left.=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime}\right)$.

A 10-ml two-necked flask was equipped with a magnetic stirrer, connected to a combined nitrogen/vacuum-line and charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.029 \mathrm{~g}, 0.025 \mathrm{mmol})$. Anhydrous THF (5 ml) and the crude carbonate $\mathbf{1 0}$ obtained above were added, and the mixture was stirred under N_{2} at ambient temperature over night. The solvent was distilled off in a rotary evaporator and the residue was subjected to column chromatography (hexane/ethyl acetate 1:1). Thus chingchengenamide A (2) was obtained as a light yellow oil. Yield $0.07 \mathrm{~g}(50 \%)$; $R_{\mathrm{f}}=0.61 .-{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta / \mathrm{ppm}=0.92\left(\mathrm{~d},{ }^{3} J=6.6\right.$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 1.75-1.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.42\left(\mathrm{dt},{ }^{3} J=7.2 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6\right), 2.65\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7\right), 3.14(\mathrm{t}$, ${ }^{3} J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ '), $5.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 5.76\left(\mathrm{~d},{ }^{3} J=15.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.92$ (s, 2H, H-2"), 6.02-6.16 (m, 2H, H-4, H5), $6.60\left(\mathrm{dd},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}\right), 6.65\left(\mathrm{~d},{ }^{4} J=\right.$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ "), 6.72 (d, ${ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7{ }^{\prime \prime}$), 7.22 (dd, $\left.{ }^{3} J=15.0 \mathrm{~Hz},{ }^{3} J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)-{ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta / \mathrm{ppm}=20.1\left(\mathrm{C}-3^{\prime}\right), 28.6\left(\mathrm{C}-2^{\prime}\right), 35.0(\mathrm{C}-6, \mathrm{C}-7), 46.9\left(\mathrm{C}-1{ }^{\prime}\right)$, 100.8 (C-2"), 108.2 (C-7"), 108.8 (C-4"), 121.2 (C-2), 122.2 (C-6"), 128.9 (C-4), 135.1 (C-5"), 141.0 (C-5), 141.6 (C-3), 145.7 (C-7a"), 147.6 (C-3a"), 166.3 (C-1). The spectroscopic data are in accordance with those described in the literature $[3,5,6]$.

References

[1] M. Braun, S. Mroß, I. Schwarz, Synthesis 1998, 83
[2] J. X. de Araujo, Jr., E. V. L. Da-Cunha, M. C. de O. Chaves, A. I. Gray, Phytochemistry 1997, 44, 559
[3] D. Zhihui, D. Jingkai, C. Zonglian, B. Peiyu, N. Hayashi, H. Komae, Phytochemistry 1991, 30, 3797.
[4] V. S. Parmar, M. E. Bracke, J. Philippe, J. Wengel, S. C. Jain, C. E. Olsen, K. S. Bisht, N. K. Sharma, A. Courtens, S. K. Sharma, K. Vennekens, V. van Marck, S. K. Singh, N. Kumar, A. Kumar, S. Malhotra, R. Kumar, V. K. Rajwanshi, R. Jain, M. M. Marell, Bioorg. Med. Chem. 1997, 5, 1609
[5] G. L. Kad, A. K. Arora, S. Singh, J. Singh, Collect. Czech. Chem. Commun. 1995, 60, 1050
[6] V. S. Parmar, R. Sinha, N. A. Shakil, O. D. Tyagi, P. M. Boll, A. Wengel, Indian J. Chem. 1993, 32B, 392
[7] E. J. Barreiro, P. R. R. Costa, F. A. S. Coelho, F. M. C. de Farias, J. Chem. Res. (S) 1985, 220
[8] S. Trippett, D. M. Walker, J. Chem. Soc. 1961, 1266
[9] S. E. Kelly, in Comprehensive Organic Synthesis (B. M. Trost, Ed.), Vol 2, Pergamon, Oxford 1991, p. 181
[10] R. Devant, U. Mahler, M. Braun, Chem. Ber. 1988, 121, 397

Address for correspondence:
Prof. Dr. Manfred Braun
Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf
Universitätsstr. 1
D-40225 Düsseldorf
Fax: Intern. code (0) 2118113085
E-mail: braunm@uni-duesseldorf.de

