Synthesis of Naturally Occurring Dienamides by Palladium-Catalyzed Carbonyl Alkenylation

Ido Schwarz, and Manfred Braun*

Düsseldorf, Institut für Organische und Makromolekulare Chemie der Heinrich-Heine-Universität

Received October 9th, 1998

Dedicated to Professor Hans-Dieter Martin on the Occasion of his 60th Birthday

Keywords: Eliminations, Alkaloids, Amides, Palladium, Piperdardine, Chingchengenamide A

Abstract. Piperdardine **1** and chingchengenamide A **2**, naturally occurring dienamides, are synthesized in 28% and 16% overall yield, respectively, from commercially avail-

able safrole **3**. The key steps involve aldol addition to the enal **5** and mild palladium-catalyzed elimination of the carbonates **7** and **10**.

Recently, we reported on a mild and stereoconvergent palladium-catalyzed alkenylation reaction of α,β -unsaturated aldehydes [1]. Here, the application of this method to a short synthesis of the naturally occurring dienamides piperdardine 1 and chingchengenamide A 2 is described. The amide 1 was recently isolated from the stem of Piper tuberculatum, a plant which serves as a sedative and as an antidote for snake bite in Brazil [2]. Asarum chingchengense, the source of chingchengenamide A 2, is used in China as a folk medicine for diaphoresis and as an emetic [3]. According to a recent study, an effect of 2 on the invasion of human MCF-7/6 breast carcinoma cells was not detected [4]. The same amide 2, a synthesis of which was described recently [5], was also found in Piper falconeri and showed insecticidal activity against flies and mosquitoes [6]. Having in hand an easy protocol for the alkenylation of α,β -unsaturated aldehydes, we applied the method to the preparation of chingchengenamide A 2 and to the first synthesis of piperdardine 1.

Thus, commercially available safrole **3** was converted into the aldehyde **4** by hydroboration and subsequent oxidation, according to a known protocol [5, 7]. Subsequent treatment with (formylmethylene)triphenylphosphorane followed by acidic hydrolysis [8] led to the enal **5**, which served as the intermediate for the preparation of both amides **1** and **2**. In order to obtain piperdardine **1**, acetyl piperidine **6** was deprotonated to give the lithium enolate, and added to the aldehyde **5**. The alkoxide thus formed was protected *in situ* by addition of methyl chloroformate. When the carbonate **7** obtained thereby was treated with 5 mol% of Pd(PPh₃)₄ at room temperature, a smooth conversion into the dienamide **1** occurred. The product 1 turned out to be identical with the natural product. The overall yield of the alkenylation step amounted to 62%, starting from 5.

Chingchengenamide A **2** was available in an analogous way. Thus *N-i*-butyracetamide **8** was deprotonated twice and added to the aldehyde **5** to give the allylic alcohol **9** in 72% yield. This was converted into the carbonate **10** by reaction with methyl chloroformate in pyridine and subsequently submitted to the palladium-catalyzed elimination to give the amide **2**, which was found to be identical with chingchengenamide A according to the spectroscopic data.

Compared with established alkenylation methods as *e.g.* the Wittig, the Horner-Wadsworth-Emmons and the Julia reaction, the protocol used here avoids not only the tedious removal of phosphine oxides but also the use of toxic reagents like phosphonates and sodium amalgam [9]. The naturally occurring dienamides **1** and **2** are thus available in a straightforward manner in 28% and 16% overall yield, respectively, starting from safrole **3**.

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. The latter institution also kindly provided a doctoral fellowship to I. S.

Experimental

The following spectrometers were used: NMR spectra: Bruker DRX 500; CDCl₃ solutions and TMS as internal standard. The assignment of the signals refers to the numbering given in formulae 1 and 2. Mass spectra: Varian MAT CH5. IR spectra: Bruker Vector 22. Chromatography: TLC: Silica gel 60 F₂₅₄ (Merck). Column chromatography: Silica gel 60, mesh size 0.04-0.063 mm (Merck). Elemental analyses were carried out by Institut f. Pharmazeutische Chemie, Universität Düsseldorf. Tetrahydrofuran (THF) was predried with KOH and distilled under N2 from sodium/benzophenone. It was taken from the receiving flask, which was closed by a septum, using syringes or cannulas. Reactions performed at temperatures lower than -20 °C were monitored by introducing a thermocouple, connected to a resistance thermometer (Ebro), through a septum into the reaction mixture. General remarks concerning the handling of lithium enolates and other organolithium compounds are given in ref. [10].

3-(1,3-Benzodioxol-5-yl)-propanal (**4**) was prepared according to ref. [7]

5-(1,3-Benzodioxol-5-yl)-2-pentenal (5)

A solution of 4 (0.89 g, 5.00 mmol) and (formylmethylene) triphenylphosphorane (1.59 g, 5.20 mmol) in benzene (50 ml) was refluxed for 24 h. The solvent was removed in a rotary evaporator and the residue was subjected to column chromatography (CH₂Cl₂) to give 5 as a light yellow oil. Yield 0.63 g (62%); $R_{\rm f} = 0.42$. – IR: v/cm⁻¹ = 2896, 1688, 1637, 1503, 1490, 1443, 1246, 1188, 1125, 1039, 973, 935, 810. -¹H NMR (500 MHz): δ /ppm = 2.59–2.65 (m, 2H, H-4), 2.75 $(t, {}^{3}J = 7.5 \text{ Hz}, 2H, H-5), 5.93 (s, 2H, H-2'), 6.12 (ddt, {}^{3}J =$ 15.7 Hz, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.5$ Hz, 1H, H-2), 6.63 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.7$ Hz, 1H, H-6'), 6.67 (d, ${}^{4}J = 1.7$ Hz, 1H, H-4'), 6.74 (d, ${}^{3}J$ = 7.8 Hz, 1H, H-7'), 6.83 (dt, ${}^{3}J$ = 15.7 Hz, ${}^{3}J$ = 6.7 Hz, 1H, H-3), 9.49 (d, ${}^{3}J = 7.8$ Hz, H-1). – ${}^{13}C$ NMR (125) MHz): δ /ppm = 33.8 (C-5), 34.5 (C-4), 100.9 (C-2'), 108.3 (C-4'), 108.7 (C-7'), 121.2 (C-6'), 133.5 (C-2), 134.0 (C-5'), 146.1 (C-7a'), 147.8 (C-3a'), 157.1 (C-3), 193.9 (C-1). - MS (EI, 70 eV): m/z (%) = 204 (12), 161 (3), 149 (3), 136 (9), 135

1-[7-(1,3-Benzodioxol-5-yl)-1-oxo-2,4-heptadienyl]piperidine (Piperdardine) (1)

A 50-ml two-necked flask, connected to a combined nitrogen/ vacuum-line, was equipped with a magnetic stirrer and a septum. A thermocouple was introduced through the septum. During the following manipulations an N₂ atmosphere was maintained in all flasks. Anhydrous THF (5 ml) and diisopropylamine (0.15 ml, 1.1 mmol) were injected through the septum by syringes. The mixture was stirred at -78 °C, and a 1.6M solution of BuLi in hexane (0.46 ml, 1.075 mmol) was added in such a way that the temperature did not exceed -70 °C. After stirring for 30 min at 0 °C, the mixture was again cooled to -78 °C. In a 25-ml two-necked flask, connected to the combined nitrogen/vacuum-line, a solution of acetyl piperidine (6) (0.13 g, 1.05 mmol) in anhydrous THF (5 ml) was stirred at -78 °C. This mixture was added by a cannula to the slightly evacuated 50-ml flask containing the solution of lithium diisopropylamide. After stirring for 30 min at -78 °C the aldehyde 5 (0.20 g, 1.0 mmol) was added slowly by syringe so that the temperature did not exceed -70 °C, and stirring was continued for 30 min at -78 °C. Methyl chloroformate (0.23 ml, 3.0 mmol) was injected, and the mixture was allowed to reach r.t. overnight. A saturated aqueous solution of NH₄Cl (20 ml) was added. The mixture was transferred into a separatory funnel, and the organic layer was separated. The aqueous phase was extracted with diethyl ether (2 \times 50 ml). The combined organic layers were washed with brine (20 ml), dried (MgSO₄) and concentrated in a rotary evaporator. The crude 1-[7-(1,3-Benzodioxol-5-yl)-3-methoxycarbonyloxy-1-oxo-4-heptenyl]piperidine (7) thus obtained was used without purification in the following step. -¹H NMR $(500 \text{ MHz}): \delta/\text{ppm} = 1.50 - 1.67 \text{ (m, 6H, H-3, H-4, H-5)}, 2.30$ (dt, ${}^{3}J = 15.1$ Hz, ${}^{3}J = 7.6$ Hz, 2H, H-6'), 2.48 (dd, ${}^{3}J = 15.2$ Hz, ${}^{3}J = 5$ Hz, 1H, H-2'), 2.60 (t, ${}^{3}J = 7.6$ Hz, 2H, H-7'), 2.80 $(dd, {}^{3}J = 15.2 \text{ Hz}, {}^{3}J = 7.5 \text{ Hz}, 1\text{H}, \text{H-2'}), 3.35 - 3.58 \text{ (m, 4H,}$ H-2, H-6), 3.77 (s, 3H, OCH₃), 5.48-5.55 (m, 2H, H-3', H-4'), 5.85 (dt, ${}^{3}J = 14.2$ Hz, ${}^{3}J = 7.0$ Hz, 1H, H-5'), 5.91 (s, 2H, H-2"), 6.59 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.7$ Hz, 1H, H-6"), 6.64 (d, ${}^{4}J = 1.7$ Hz, 1H, H-4"), 6.70 (d, ${}^{3}J = 7.8$ Hz, 1H, H-7").

A 10-ml two-necked, was equipped with a magnetic stirrer, and connected to a combined nitrogen/vacuum-line was charged with $Pd(PPh_3)_4$ (0.058 g, 0.05 mmol). Anhydrous THF (5 ml) and the crude carbonate 7 obtained above were added, and the mixture was stirred under N₂ at ambient temperature over night. The solvent was distilled off in a rotary evaporator, and the residue was subjected to column chromatography (hexane/ethyl acetate 1:1) to give **1** as a light yellow oil. Yield 0.19 g (62%); $R_f = 0.39. - {}^{1}H$ NMR (500 MHz): δ /ppm = 1.54–1.59 (m, 4H, H-3, H-5), 1.62–1.67 (m, 2H, H-4), 2.42 (dt, ${}^{3}J$ = 7.0 Hz, ${}^{3}J$ = 7.3 Hz, 2H, H-6'), 2.66 (t, ${}^{3}J$ = 7.3 Hz, 2H, H-7'), 3.48 (br s, 2H, H-2), 3.61 (br s, 2H, H-6), 5.92 (s, 2H, H-2"), 6.05 (dt, ${}^{3}J = 15.1$ Hz, ${}^{3}J = 7.0$ Hz, 1H, H-5'), 6.18 (dd, ${}^{3}J$ = 15.1 Hz, ${}^{3}J$ = 10.8 Hz, 1H, H-4'), 6.26 (d, ${}^{3}J$ = 14.4 Hz, 1H, H-2'), 6.61 (dd, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 1.5 Hz, 1H, H-6"), 6.66 (d, ${}^{4}J$ = 1.5 Hz, 1H, H-4"), 6.72 (d, ${}^{3}J$ = 8.2 Hz, 1H, H-7"), 7.22 (dd, ${}^{3}J = 14.4$ Hz, ${}^{3}J = 10.8$ Hz, 1H, H-3') – ¹³C NMR (125 MHz): δ /ppm = 24.6 (C-4), 25.6 (C-3), 26.7 (C-5), 35.0 (C-6', C-7'), 43.2 (C-2), 46.8 (C-6), 100.8 (C-2"), 108.1 (C-7"), 108.8 (C-4"), 119.1 (C-2'), 121.1 (C-6"), 129.5 (C-4'), 135.1 (C-5"), 140.8 (C-5'), 142.4 (C-3'), 145.7 (C-7a"), 147.6 (C-3a"), 165.5 (C-1'). The spectroscopic data are in accordance with those described in the literature [2].

7-(1,3-Benzodioxol-5-yl)-3-hydroxy-N-(2-methylpropyl)-4heptenamide (9)

Under N_2 atmosphere, a solution of *N*-*i*-butyracetamide **8** (0.13 g, 1.1 mmol) in anhydrous THF (5 ml) was stirred in a 50-ml two-necked flask, equipped with a magnetic stirrer, a septum, and a thermocouple. After cooling to -78 °C, a 1.6M solution of BuLi in hexane (1.38 ml, 2.2 mmol) was added dropwise, and the mixture was stirred at 0 °C for 2 h. After the solution was cooled to -78 °C again, the aldehyde 5 (0.20g, 1.0 mmol) was added slowly by syringe so that the temperature did not exceed -70 °C. The mixture was allowed to reach *r.t.* overnight and worked up according to the procedure described above for 7. The crude product was submitted to column chromatography (hexane/ethyl acetate 1:4) to afford 9. Yield 0.23 g (72%); $R_{\rm f} = 0.50. - IR$ (KBr): $\nu/cm^{-1} = 3312, 2958,$ 1636, 1570, 1505, 1446, 1262, 1184, 1098, 1049, 965, 923, 814. – ¹H NMR (500 MHz): δ /ppm = 0.91 (d, ³J = 6.7 Hz, 6H, H-3'), 1.72-1.80 (m, 1H, H-2'), 2.27-2.41 (m, 4H, H-2, H-6), 2.59 (t, ${}^{3}J = 7.5$ Hz, 2H, H-7), 3.08 (t, ${}^{3}J = 6.5$ Hz, 2H, H-1'), 3.78 (br s, 1H, OH), 4.42-4.46 (m, 1H, H-3), 5.50 (ddd, ${}^{3}J = 15.4$ Hz, ${}^{3}J = 6.5$ Hz, ${}^{4}J = 1.4$ Hz, 1H, H-4), 5.72 $(ddt, {}^{3}J = 15.4 Hz, {}^{3}J = 6.7 Hz, {}^{4}J = 1.0 Hz, 1H, H-5), 5.91 (s,$ 2H, H-2"), 6.13 (br s, 1H, N<u>H</u>), 6.60 (dd, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.7$ Hz, 1H, H-6"), 6.65 (d, ${}^{4}J$ = 1.7 Hz, 1H, H-4"), 6.71 (d, ${}^{3}J$ = 8.0 Hz, 1H, H-7") – ¹³C NMR (125 MHz): δ /ppm = 20.1 (C-3'), 28.4 (C-2'), 34.2 (C-6), 35.2 (C-7), 42.8 (C-2), 46.7 (C-1'), 69.5 (C-3), 100.7 (C-2"), 108.1 (C-7"), 108.9 (C-4"), 121.1 (C-6"), 131.2 (C-5), 131.8 (C-4), 135.5 (C-5"), 145.6 (C-7a"), 147.5 (C-3a"), 171.9 (C-1). $C_{18}H_{25}NO$ calcd.: C 67.80 H 7.89 N 4.39 (319.4)found: C 67.69 H 8.15 N 4.30.

7-(1,3-Benzodioxol-5-yl)-N-(2-methylpropyl)-2,4-heptadienamide (Chingchengenamide A) (2)

In a 10-ml two-necked flask, equipped with a magnetic stirrer and connected to a combined nitrogen/vacuum-line, allylic alcohol 9 (0.16 g, 0.5 mmol) was dissolved in CHCl₃ (1 ml) and pyridine (2 ml). A solution of methyl chloroformate (0.16 g, 1.7 mmol) in CHCl₃ (1 ml) was added dropwise, and the reaction mixture was stirred for 30 min. The solvent was re-moved in a rotary evaporator, and the residue was dissolved in CHCl₃. The organic layer was washed twice with aqueous HCl (1N), twice with aqueous NaOH (2N), once with H_2O and dried with MgSO₄. The solvent was removed in a rotary evaporator to give the crude 7-(1,3-Benzodioxol-5-yl)-3methoxycarbonyloxy-N-(2-methylpropyl)-4-heptenamide 10 which was used without purification in the following step. -¹H NMR (500 MHz): δ /ppm = 0.89 (d, ³J = 6.6 Hz, 6H, H-3'), 1.70–1.79 (m, 1H, H-2'), 2.29 (dt, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 7.0$ Hz, 2H, H-6), 2.35-2.55 (m, 2H, H-2), 2.59 (t, ${}^{3}J = 7.7$ Hz, 2H, H-7), 3.06 (t, ${}^{3}J = 6.4$ Hz, 2H, H-1'), 3.76 (s, 3H, OCH₃), 5.41–5.52 (m, 2H, H-3, H-4), 5.82–5.89 (m, 1H, H-5), 5.90 (s, 2H, H-2"), 6.20 (br s, 1H, N<u>H</u>), 6.58 (dd, ${}^{3}J$ = 8.0 Hz, ${}^{4}J$ = 1.5 Hz, 1H, H-6"), 6.63 (d, ${}^{4}J$ = 1.5 Hz, 1H, H-4"), 6.71 (d, ${}^{3}J$ = 8.0 Hz, 1H, H-7").

A 10-ml two-necked flask was equipped with a magnetic stirrer, connected to a combined nitrogen/vacuum-line and charged with Pd(PPh₃)₄ (0.029 g, 0.025 mmol). Anhydrous THF (5 ml) and the crude carbonate 10 obtained above were added, and the mixture was stirred under N₂ at ambient temperature over night. The solvent was distilled off in a rotary evaporator and the residue was subjected to column chromatography (hexane/ethyl acetate 1:1). Thus chingchengenamide A (2) was obtained as a light yellow oil. Yield 0.07 g (50%); $R_{\rm f} = 0.61. - {}^{1}{\rm H} \text{ NMR} (500 \text{ MHz}): \delta/\text{ppm} = 0.92 \text{ (d, } {}^{3}{J} = 6.6$ Hz, 6H, H-3'), 1.75–1.84 (m, 1H, H-2'), 2.42 (dt, ³*J* = 7.2 Hz, ${}^{3}J = 7.6$ Hz, 2H, H-6), 2.65 (t, ${}^{3}J = 7.2$ Hz, 2H, H-7), 3.14 (t, ${}^{3}J = 6.5$ Hz, 2H, H-1'), 5.62 (br s, 1H, NH), 5.76 (d, ${}^{3}J = 15.0$ Hz, 1H, H-2), 5.92 (s, 2H, H-2"), 6.02-6.16 (m, 2H, H-4, H-5), 6.60 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.7 Hz, 1H, H-6"), 6.65 (d, ${}^{4}J$ = 1.7 Hz, 1H, H-4"), 6.72 (d, ${}^{3}J = 7.8$ Hz, 1H, H-7"), 7.22 (dd, ${}^{3}J = 15.0$ Hz, ${}^{3}J = 10.4$ Hz, 1H, H-3) – ${}^{13}C$ NMR (125 MHz): δ/ppm = 20.1 (C-3'), 28.6 (C-2'), 35.0 (C-6, C-7), 46.9 (C-1'), 100.8 (C-2"), 108.2 (C-7"), 108.8 (C-4"), 121.2 (C-2), 122.2 (C-6"), 128.9 (C-4), 135.1 (C-5"), 141.0 (C-5), 141.6 (C-3), 145.7 (C-7a"), 147.6 (C-3a"), 166.3 (C-1). The spectroscopic data are in accordance with those described in the literature [3, 5, 6].

References

- [1] M. Braun, S. Mroß, I. Schwarz, Synthesis 1998, 83
- [2] J. X. de Araujo, Jr., E. V. L. Da-Cunha, M. C. de O. Chaves, A. I. Gray, Phytochemistry **1997**, *44*, 559
- [3] D. Zhihui, D. Jingkai, C. Zonglian, B. Peiyu, N. Hayashi, H. Komae, Phytochemistry **1991**, *30*, 3797.
- [4] V. S. Parmar, M. E. Bracke, J. Philippe, J. Wengel, S. C. Jain, C. E. Olsen, K. S. Bisht, N. K. Sharma, A. Courtens, S. K. Sharma, K. Vennekens, V. van Marck, S. K. Singh, N. Kumar, A. Kumar, S. Malhotra, R. Kumar, V. K. Rajwanshi, R. Jain, M. M. Marell, Bioorg. Med. Chem. **1997**, *5*, 1609
- [5] G. L. Kad, A. K. Arora, S. Singh, J. Singh, Collect. Czech. Chem. Commun. 1995, 60, 1050
- [6] V. S. Parmar, R. Sinha, N. A. Shakil, O. D. Tyagi, P. M. Boll, A. Wengel, Indian J. Chem. **1993**, *32B*, 392
- [7] E. J. Barreiro, P. R. R. Costa, F. A. S. Coelho, F. M. C. de Farias, J. Chem. Res. (S) 1985, 220
- [8] S. Trippett, D. M. Walker, J. Chem. Soc. 1961, 1266
- [9] S. E. Kelly, in Comprehensive Organic Synthesis (B. M. Trost, Ed.), Vol 2, Pergamon, Oxford 1991, p. 181
- [10] R. Devant, U. Mahler, M. Braun, Chem. Ber. 1988, 121, 397

Address for correspondence:

Prof. Dr. Manfred Braun

Institut für Organische Chemie und Makromolekulare Chemie

Heinrich-Heine-Universität Düsseldorf

Universitätsstr. 1

D-40225 Düsseldorf

Fax: Intern. code (0) 211 811 3085

E-mail: braunm@uni-duesseldorf.de